1+1+1+…=?\sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}} = ?1+1+1+…=?
How do we go about solving this problem? Set the value equal to x:
x=1+1+1+…x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}x=1+1+1+…
implying
x2=1+1+1+1+…=1+xx^2 =1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}} = 1 + xx2=1+1+1+1+…=1+x
Now have a quadratic equation we can solve: x2−x−1=0x^2 - x - 1 =0x2−x−1=0, implying one solution is
x=(1+5)/2x = (1 + \sqrt{5}) /2x=(1+5)/2, which amazingly is the golden ratio!
[in progress]
Last updated 7 years ago