Goodies

Golden Ratio

1+1+1+=?\sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}} = ?

How do we go about solving this problem? Set the value equal to x:

x=1+1+1+x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}

implying

x2=1+1+1+1+=1+xx^2 =1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}} = 1 + x

Now have a quadratic equation we can solve: x2x1=0x^2 - x - 1 =0, implying one solution is

x=(1+5)/2x = (1 + \sqrt{5}) /2, which amazingly is the golden ratio!

[in progress]

Last updated